Association between SLC2A9 transporter gene variants and uric acid phenotypes in African American and white families.

نویسندگان

  • Andrew D Rule
  • Mariza de Andrade
  • Martha Matsumoto
  • Tom H Mosley
  • Sharon Kardia
  • Stephen T Turner
چکیده

OBJECTIVES SLC2A9 gene variants associate with serum uric acid in white populations, but little is known about African American populations. Since SLC2A9 is a transporter, gene variants may be expected to associate more closely with the fractional excretion of urate, a measure of renal tubular transport, than with serum uric acid, which is influenced by production and extrarenal clearance. METHODS Genotypes of single nucleotide polymorphisms (SNPs) distributed across the SLC2A9 gene were obtained in the Genetic Epidemiology Network of Arteriopathy cohorts. The associations of SNPs with serum uric acid, fractional excretion of urate and urine urate-to-creatinine ratio were assessed with adjustments for age, sex, diuretic use, BMI, homocysteine and triglycerides. RESULTS We identified SLC2A9 gene variants that were associated with serum uric acid in 1155 African American subjects (53 SNPs) and 1132 white subjects (63 SNPs). The most statistically significant SNPs in African American subjects (rs13113918) and white subjects (rs11723439) were in the latter half of the gene and explained 2.7 and 2.8% of the variation in serum uric acid, respectively. After adjustment for this SNP in African Americans, 0.9% of the variation in serum uric acid was explained by an SNP (rs1568318) in the first half of the gene. Unexpectedly, SLC2A9 gene variants had stronger associations with serum uric acid than with fractional excretion of urate. CONCLUSIONS These findings support two different loci by which SLC2A9 variants affect uric acid levels in African Americans and suggest SLC2A9 variants affect serum uric acid level via renal and extrarenal clearance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions between genetic variants in glucose transporter type 9 (SLC2A9) and dietary habits in serum uric acid regulation.

AIM To investigate possible interactions between genetic variants in glucose transporter type 9 (SLC2A9) gene and dietary habits in serum uric acid regulation. METHODS Participants for this study were recruited from two isolated Croatian island communities of Vis (n=918) and Korcula (n=898). Three single nucleotide polymorphisms (SNP) from the SLC2A9 gene (rs1014290, rs6449213, rs737267) were...

متن کامل

SLC2A9 Genotype Is Associated with SLC2A9 Gene Expression and Urinary Uric Acid Concentration

OBJECTIVES SLC2A9 gene variants have been associated with urinary uric acid (UA) concentration, but little is known about the functional mechanism linking these gene variants with UA. SLC2A9 encodes a UA transporter present in the proximal tubule of the kidney, and gene expression levels of SLC2A9 and other genes in the uricosuric pathway (ABCG2, SLC17A1, SLC17A3, and SLC22A12) could potentiall...

متن کامل

Homozygous SLC2A9 mutations cause severe renal hypouricemia.

Hereditary hypouricemia may result from mutations in the renal tubular uric acid transporter URAT1. Whether mutation of other uric acid transporters produces a similar phenotype is unknown. We studied two families who had severe hereditary hypouricemia and did not have a URAT1 defect. We performed a genome-wide homozygosity screen and linkage analysis and identified the candidate gene SLC2A9, w...

متن کامل

Serum uric acid concentrations and SLC2A9 genetic variation in Hispanic children: the Viva La Familia Study.

BACKGROUND Elevated concentrations of serum uric acid are associated with increased risk of gout and renal and cardiovascular diseases. Genetic studies in adults have consistently identified associations of solute carrier family 2, member 9 (SLC2A9), polymorphisms with variation in serum uric acid. However, it is not known whether the association of serum uric acid with SLC2A9 polymorphisms man...

متن کامل

SLC2A9 Is a High-Capacity Urate Transporter in Humans

BACKGROUND Serum uric acid levels in humans are influenced by diet, cellular breakdown, and renal elimination, and correlate with blood pressure, metabolic syndrome, diabetes, gout, and cardiovascular disease. Recent genome-wide association scans have found common genetic variants of SLC2A9 to be associated with increased serum urate level and gout. The SLC2A9 gene encodes a facilitative glucos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Rheumatology

دوره 50 5  شماره 

صفحات  -

تاریخ انتشار 2011